LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of Gold Nanoparticle Vertical Flow Assays for Point-of-Care Testing

Photo from wikipedia

Vertical flow assays (VFAs) or flow-through assays have emerged as an alternate type of paper-based assay due to their faster detection time, larger sample volume capacity, and significantly higher multiplexing… Click to show full abstract

Vertical flow assays (VFAs) or flow-through assays have emerged as an alternate type of paper-based assay due to their faster detection time, larger sample volume capacity, and significantly higher multiplexing capabilities. They have been successfully employed to detect several different targets (polysaccharides, protein, and nucleic acids), although in a limited number of samples (serum, whole blood, plasma) compared to the more commonly known lateral flow assays (LFAs). The operation of a VFA relies mainly on gravity, coupled with capillary action or external force to help the sample flow through layers of stacked pads. With recent developments in this field, multiple layers of pads and signal readers have been optimized for more user-friendly operation, and VFAs have achieved a lower limit of detection for various analytes than the gold-standard methods. Thus, compared to the more widely used LFA, the VFA demonstrates certain advantages and is becoming an increasingly popular platform for obtaining qualitative and quantitative results in low-resource settings. Considering the wide application of gold nanoparticles (GNPs) in VFAs, we will mostly discuss (1) the design of GNP-based VFA along with its associated advantages/disadvantages, (2) fabrication and optimization of GNP-based VFAs for applications, and (3) the future outlook of flow-based assays for point-of-care testing (POCT) diagnostics.

Keywords: point care; flow assays; flow; vertical flow; care testing; assays point

Journal Title: Diagnostics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.