LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automated Detection of Cervical Carotid Artery Calcifications in Cone Beam Computed Tomographic Images Using Deep Convolutional Neural Networks

Photo from wikipedia

The aim of this study was to determine if a convolutional neural network (CNN) can be trained to automatically detect and localize cervical carotid artery calcifications (CACs) in CBCT. A… Click to show full abstract

The aim of this study was to determine if a convolutional neural network (CNN) can be trained to automatically detect and localize cervical carotid artery calcifications (CACs) in CBCT. A total of 56 CBCT studies (15,257 axial slices) were utilized to train, validate, and test the deep learning model. The study comprised of two steps: Step 1: Localizing axial slices that are below the C2–C3 disc space. For this step the openly available Inception V3 architecture was trained on the ImageNet dataset of real-world images, and retrained on 40 CBCT studies. Step 2: Detecting CACs in slices from step 1. For this step, two methods were implemented; Method A: Segmentation neural network trained using small patches at random coordinates of the original axial slices; Method B: Segmentation neural network trained using two larger patches at fixed coordinates of the original axial slices with an improved loss function to account for class imbalance. Our approach resulted in 94.2% sensitivity and 96.5% specificity. The mean intersection over union metric for Method A was 76.26% and Method B improved this metric to 82.51%. The proposed CNN model shows the feasibility of deep learning in the detection and localization of CAC in CBCT images.

Keywords: carotid artery; convolutional neural; cervical carotid; artery calcifications; axial slices

Journal Title: Diagnostics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.