LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Risk of Mortality Prediction Involving Time-Varying Covariates for Patients with Heart Failure Using Deep Learning

Photo from wikipedia

Heart failure (HF) is challenging public medical and healthcare systems. This study aimed to develop and validate a novel deep learning-based prognostic model to predict the risk of all-cause mortality… Click to show full abstract

Heart failure (HF) is challenging public medical and healthcare systems. This study aimed to develop and validate a novel deep learning-based prognostic model to predict the risk of all-cause mortality for patients with HF. We also compared the performance of the proposed model with those of classical deep learning- and traditional statistical-based models. The present study enrolled 730 patients with HF hospitalized at Toho University Ohashi Medical Center between April 2016 and March 2020. A recurrent neural network-based model (RNNSurv) involving time-varying covariates was developed and validated. The proposed RNNSurv showed better prediction performance than those of a deep feed-forward neural network-based model (referred as “DeepSurv”) and a multivariate Cox proportional hazard model in view of discrimination (C-index: 0.839 vs. 0.755 vs. 0.762, respectively), calibration (better fit with a 45-degree line), and ability of risk stratification, especially identifying patients with high risk of mortality. The proposed RNNSurv demonstrated an improved prediction performance in consideration of temporal information from time-varying covariates that could assist clinical decision-making. Additionally, this study found that significant risk and protective factors of mortality were specific to risk levels, highlighting the demand for an individual-specific clinical strategy instead of a uniform one for all patients.

Keywords: varying covariates; mortality; risk; deep learning; time varying

Journal Title: Diagnostics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.