LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Image-Based Numerical Analysis for Isolated Type II SLAP Lesions in Shoulder Abduction and External Rotation

Photo from wikipedia

The glenohumeral joint (GHJ) is one of the most critical structures in the shoulder complex. Lesions of the superior labral anterior to posterior (SLAP) cause instability at the joint. Isolated… Click to show full abstract

The glenohumeral joint (GHJ) is one of the most critical structures in the shoulder complex. Lesions of the superior labral anterior to posterior (SLAP) cause instability at the joint. Isolated Type II of this lesion is the most common, and its treatment is still under debate. Therefore, this study aimed to determine the biomechanical behavior of soft tissues on the anterior bands of the glenohumeral joint with an Isolated Type II SLAP lesion. Segmentation tools were used to build a 3D model of the shoulder joint from CT-scan and MRI images. The healthy model was studied using finite element analysis. Validation was conducted with a numerical model using ANOVA, and no significant differences were shown (p = 0.47). Then, an Isolated Type II SLAP lesion was produced in the model, and the joint was subjected to 30 degrees of external rotation. A comparison was made for maximum principal strains in the healthy and the injured models. Results revealed that the strain distribution of the anterior bands of the synovial capsule is similar between a healthy and an injured shoulder (p = 0.17). These results demonstrated that GHJ does not significantly deform for an Isolated Type II SLAP lesion subjected to 30-degree external rotation in abduction.

Keywords: isolated type; type slap; lesion; joint; external rotation

Journal Title: Diagnostics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.