LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling NDVI Using Joint Entropy Method Considering Hydro-Meteorological Driving Factors in the Middle Reaches of Hei River Basin

Photo by joboschenk from unsplash

Terrestrial vegetation dynamics are closely influenced by both hydrological process and climate change. This study investigated the relationships between vegetation pattern and hydro-meteorological elements. The joint entropy method was employed… Click to show full abstract

Terrestrial vegetation dynamics are closely influenced by both hydrological process and climate change. This study investigated the relationships between vegetation pattern and hydro-meteorological elements. The joint entropy method was employed to evaluate the dependence between the normalized difference vegetation index (NDVI) and coupled variables in the middle reaches of the Hei River basin. Based on the spatial distribution of mutual information, the whole study area was divided into five sub-regions. In each sub-region, nested statistical models were applied to model the NDVI on the grid and regional scales, respectively. Results showed that the annual average NDVI increased at a rate of 0.005/a over the past 11 years. In the desert regions, the NDVI increased significantly with an increase in precipitation and temperature, and a high accuracy of retrieving NDVI model was obtained by coupling precipitation and temperature, especially in sub-region I. In the oasis regions, groundwater was also an important factor driving vegetation growth, and the rise of the groundwater level contributed to the growth of vegetation. However, the relationship was weaker in artificial oasis regions (sub-region III and sub-region V) due to the influence of human activities such as irrigation. The overall correlation coefficient between the observed NDVI and modeled NDVI was observed to be 0.97. The outcomes of this study are suitable for ecosystem monitoring, especially in the realm of climate change. Further studies are necessary and should consider more factors, such as runoff and irrigation.

Keywords: hydro meteorological; vegetation; reaches hei; entropy method; joint entropy; middle reaches

Journal Title: Entropy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.