LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface Interaction of Nanoscale Water Film with SDS from Computational Simulation and Film Thermodynamics

Photo from wikipedia

Foam systems have been attracting extensive attention due to their importance in a variety of applications, e.g., in the cleaning industry, and in bubble flotation. In the context of flotation… Click to show full abstract

Foam systems have been attracting extensive attention due to their importance in a variety of applications, e.g., in the cleaning industry, and in bubble flotation. In the context of flotation chemistry, flotation performance is strongly affected by bubble coalescence, which in turn relies significantly on the surface forces upon the liquid film between bubbles. Conventionally, unusual short-range strongly repulsive surface interactions for Newton black films (NBF) between two interfaces with thickness of less than 5 nm were not able to be incorporated into the available classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. The non-DLVO interaction would increase exponentially with the decrease of film thickness, as it plays a crucial role in determining liquid film stability. However, its mechanism and origin are still unclear. In the present work, we investigate the surface interaction of free-standing sodium dodecyl-sulfate (SDS) nanoscale black films in terms of disjoining pressure using the molecular simulation method. The aqueous nanoscale film, consisting of a water coating with SDS surfactants, and with disjoining pressure and film tension of SDS-NBF as a function of film thickness, were quantitatively determined by a post-processing technique derived from film thermodynamics.

Keywords: film thermodynamics; thermodynamics; surface interaction; film; simulation

Journal Title: Entropy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.