We present a general approach for quantifying tolerance of a nonlocal N-partite state to any local noise under different classes of quantum correlation scenarios with arbitrary numbers of settings and… Click to show full abstract
We present a general approach for quantifying tolerance of a nonlocal N-partite state to any local noise under different classes of quantum correlation scenarios with arbitrary numbers of settings and outcomes at each site. This allows us to derive new precise bounds in d and N on noise tolerances for: (i) an arbitrary nonlocal N-qudit state; (ii) the N-qudit Greenberger–Horne–Zeilinger (GHZ) state; (iii) the N-qubit W state and the N-qubit Dicke states, and to analyse asymptotics of these precise bounds for large N and d.
               
Click one of the above tabs to view related content.