In this paper, a new lattice Boltzmann model for the two-component system of coupled sine-Gordon equations is presented by using the coupled mesoscopic Boltzmann equations. Via the Chapman-Enskog multiscale expansion,… Click to show full abstract
In this paper, a new lattice Boltzmann model for the two-component system of coupled sine-Gordon equations is presented by using the coupled mesoscopic Boltzmann equations. Via the Chapman-Enskog multiscale expansion, the macroscopical governing evolution system can be recovered correctly by selecting suitable discrete equilibrium distribution functions and the amending functions. The mesoscopic model has been validated by several related issues where analytic solutions are available. The experimental results show that the numerical results are consistent with the analytic solutions. From the mesoscopic point of view, the present approach provides a new way for studying the complex nonlinear partial differential equations arising in natural nonlinear phenomena of engineering and science.
               
Click one of the above tabs to view related content.