LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Obtaining Information about Operation of Centrifugal Compressor from Pressure by Combining EEMD and IMFE

Photo from wikipedia

Based on entropy characteristics, some complex nonlinear dynamics of the dynamic pressure at the outlet of a centrifugal compressor are analyzed, as the centrifugal compressor operates in a stable and… Click to show full abstract

Based on entropy characteristics, some complex nonlinear dynamics of the dynamic pressure at the outlet of a centrifugal compressor are analyzed, as the centrifugal compressor operates in a stable and unstable state. First, the 800-kW centrifugal compressor is tested to gather the time sequence of dynamic pressure at the outlet by controlling the opening of the anti-surge valve at the outlet, and both the stable and unstable states are tested. Then, multi-scale fuzzy entropy and an improved method are introduced to analyze the gathered time sequence of dynamic pressure. Furthermore, the decomposed signals of dynamic pressure are obtained using ensemble empirical mode decomposition (EEMD), and are decomposed into six intrinsic mode functions and one residual signal, and the intrinsic mode functions with large correlation coefficients in the frequency domain are used to calculate the improved multi-scale fuzzy entropy (IMFE). Finally, the statistical reliability of the method is studied by modifying the original data. After analysis of the relationships between the dynamic pressure and entropy characteristics, some important intrinsic dynamics are captured. The entropy becomes the largest in the stable state, but decreases rapidly with the deepening of the unstable state, and it becomes the smallest in the surge. Compared with multi-scale fuzzy entropy, the curve of the improved method is smoother and could show the change of entropy exactly under different scale factors. For the decomposed signals, the unstable state is captured clearly for higher order intrinsic mode functions and residual signals, while the unstable state is not apparent for lower order intrinsic mode functions. In conclusion, it can be observed that the proposed method can be used to accurately identify the unstable states of a centrifugal compressor in real-time fault diagnosis.

Keywords: dynamic pressure; state; centrifugal compressor; pressure

Journal Title: Entropy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.