LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Lorenz Curve: A Proper Framework to Define Satisfactory Measures of Symbol Dominance, Symbol Diversity, and Information Entropy

Photo from wikipedia

Novel measures of symbol dominance (dC1 and dC2), symbol diversity (DC1 = N (1 − dC1) and DC2 = N (1 − dC2)), and information entropy (HC1 = log2 DC1… Click to show full abstract

Novel measures of symbol dominance (dC1 and dC2), symbol diversity (DC1 = N (1 − dC1) and DC2 = N (1 − dC2)), and information entropy (HC1 = log2 DC1 and HC2 = log2 DC2) are derived from Lorenz-consistent statistics that I had previously proposed to quantify dominance and diversity in ecology. Here, dC1 refers to the average absolute difference between the relative abundances of dominant and subordinate symbols, with its value being equivalent to the maximum vertical distance from the Lorenz curve to the 45-degree line of equiprobability; dC2 refers to the average absolute difference between all pairs of relative symbol abundances, with its value being equivalent to twice the area between the Lorenz curve and the 45-degree line of equiprobability; N is the number of different symbols or maximum expected diversity. These Lorenz-consistent statistics are compared with statistics based on Shannon’s entropy and Rényi’s second-order entropy to show that the former have better mathematical behavior than the latter. The use of dC1, DC1, and HC1 is particularly recommended, as only changes in the allocation of relative abundance between dominant (pd > 1/N) and subordinate (ps < 1/N) symbols are of real relevance for probability distributions to achieve the reference distribution (pi = 1/N) or to deviate from it.

Keywords: lorenz curve; entropy; diversity; dc1; dc2; dominance

Journal Title: Entropy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.