LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

F-Divergences and Cost Function Locality in Generative Modelling with Quantum Circuits

Photo from wikipedia

Generative modelling is an important unsupervised task in machine learning. In this work, we study a hybrid quantum-classical approach to this task, based on the use of a quantum circuit… Click to show full abstract

Generative modelling is an important unsupervised task in machine learning. In this work, we study a hybrid quantum-classical approach to this task, based on the use of a quantum circuit born machine. In particular, we consider training a quantum circuit born machine using f-divergences. We first discuss the adversarial framework for generative modelling, which enables the estimation of any f-divergence in the near term. Based on this capability, we introduce two heuristics which demonstrably improve the training of the born machine. The first is based on f-divergence switching during training. The second introduces locality to the divergence, a strategy which has proved important in similar applications in terms of mitigating barren plateaus. Finally, we discuss the long-term implications of quantum devices for computing f-divergences, including algorithms which provide quadratic speedups to their estimation. In particular, we generalise existing algorithms for estimating the Kullback–Leibler divergence and the total variation distance to obtain a fault-tolerant quantum algorithm for estimating another f-divergence, namely, the Pearson divergence.

Keywords: machine; generative modelling; quantum; locality; divergence

Journal Title: Entropy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.