LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Scalable Bayesian Sampling Method Based on Stochastic Gradient Descent Isotropization

Photo by codioful from unsplash

Stochastic gradient sg-based algorithms for Markov chain Monte Carlo sampling (sgmcmc) tackle large-scale Bayesian modeling problems by operating on mini-batches and injecting noise on sgsteps. The sampling properties of these… Click to show full abstract

Stochastic gradient sg-based algorithms for Markov chain Monte Carlo sampling (sgmcmc) tackle large-scale Bayesian modeling problems by operating on mini-batches and injecting noise on sgsteps. The sampling properties of these algorithms are determined by user choices, such as the covariance of the injected noise and the learning rate, and by problem-specific factors, such as assumptions on the loss landscape and the covariance of sg noise. However, current sgmcmc algorithms applied to popular complex models such as Deep Nets cannot simultaneously satisfy the assumptions on loss landscapes and on the behavior of the covariance of the sg noise, while operating with the practical requirement of non-vanishing learning rates. In this work we propose a novel practical method, which makes the sg noise isotropic, using a fixed learning rate that we determine analytically. Extensive experimental validations indicate that our proposal is competitive with the state of the art on sgmcmc.

Keywords: bayesian sampling; scalable bayesian; gradient; stochastic gradient; sampling method

Journal Title: Entropy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.