LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneously Improve Transferability and Discriminability for Adversarial Domain Adaptation

Photo from wikipedia

Although adversarial domain adaptation enhances feature transferability, the feature discriminability will be degraded in the process of adversarial learning. Moreover, most domain adaptation methods only focus on distribution matching in… Click to show full abstract

Although adversarial domain adaptation enhances feature transferability, the feature discriminability will be degraded in the process of adversarial learning. Moreover, most domain adaptation methods only focus on distribution matching in the feature space; however, shifts in the joint distributions of input features and output labels linger in the network, and thus, the transferability is not fully exploited. In this paper, we propose a matrix rank embedding (MRE) method to enhance feature discriminability and transferability simultaneously. MRE restores a low-rank structure for data in the same class and enforces a maximum separation structure for data in different classes. In this manner, the variations within the subspace are reduced, and the separation between the subspaces is increased, resulting in improved discriminability. In addition to statistically aligning the class-conditional distribution in the feature space, MRE forces the data of the same class in different domains to exhibit an approximate low-rank structure, thereby aligning the class-conditional distribution in the label space, resulting in improved transferability. MRE is computationally efficient and can be used as a plug-and-play term for other adversarial domain adaptation networks. Comprehensive experiments demonstrate that MRE can advance state-of-the-art domain adaptation methods.

Keywords: adversarial domain; discriminability; adaptation; domain adaptation; transferability

Journal Title: Entropy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.