LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Approximate Entropy in Canonical and Non-Canonical Fiction

Photo by galen_crout from unsplash

Computational textual aesthetics aims at studying observable differences between aesthetic categories of text. We use Approximate Entropy to measure the (un)predictability in two aesthetic text categories, i.e., canonical fiction (‘classics’)… Click to show full abstract

Computational textual aesthetics aims at studying observable differences between aesthetic categories of text. We use Approximate Entropy to measure the (un)predictability in two aesthetic text categories, i.e., canonical fiction (‘classics’) and non-canonical fiction (with lower prestige). Approximate Entropy is determined for series derived from sentence-length values and the distribution of part-of-speech-tags in windows of texts. For comparison, we also include a sample of non-fictional texts. Moreover, we use Shannon Entropy to estimate degrees of (un)predictability due to frequency distributions in the entire text. Our results show that the Approximate Entropy values can better differentiate canonical from non-canonical texts compared with Shannon Entropy, which is not true for the classification of fictional vs. expository prose. Canonical and non-canonical texts thus differ in sequential structure, while inter-genre differences are a matter of the overall distribution of local frequencies. We conclude that canonical fictional texts exhibit a higher degree of (sequential) unpredictability compared with non-canonical texts, corresponding to the popular assumption that they are more ‘demanding’ and ‘richer’. In using Approximate Entropy, we propose a new method for text classification in the context of computational textual aesthetics.

Keywords: canonical non; approximate entropy; entropy; non canonical; canonical fiction

Journal Title: Entropy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.