LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

B-DP: Dynamic Collection and Publishing of Continuous Check-In Data with Best-Effort Differential Privacy

Photo from wikipedia

Differential privacy (DP) has become a de facto standard to achieve data privacy. However, the utility of DP solutions with the premise of privacy priority is often unacceptable in real-world… Click to show full abstract

Differential privacy (DP) has become a de facto standard to achieve data privacy. However, the utility of DP solutions with the premise of privacy priority is often unacceptable in real-world applications. In this paper, we propose the best-effort differential privacy (B-DP) to promise the preference for utility first and design two new metrics including the point belief degree and the regional average belief degree to evaluate its privacy from a new perspective of preference for privacy. Therein, the preference for privacy and utility is referred to as expected privacy protection (EPP) and expected data utility (EDU), respectively. We also investigate how to realize B-DP with an existing DP mechanism (KRR) and a newly constructed mechanism (EXPQ) in the dynamic check-in data collection and publishing. Extensive experiments on two real-world check-in datasets verify the effectiveness of the concept of B-DP. Our newly constructed EXPQ can also satisfy a better B-DP than KRR to provide a good trade-off between privacy and utility.

Keywords: utility; best effort; privacy; check; differential privacy; effort differential

Journal Title: Entropy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.