The prediction of chaotic time series systems has remained a challenging problem in recent decades. A hybrid method using Hankel Alternative View Of Koopman (HAVOK) analysis and machine learning (HAVOK-ML)… Click to show full abstract
The prediction of chaotic time series systems has remained a challenging problem in recent decades. A hybrid method using Hankel Alternative View Of Koopman (HAVOK) analysis and machine learning (HAVOK-ML) is developed to predict chaotic time series. HAVOK-ML simulates the time series by reconstructing a closed linear model so as to achieve the purpose of prediction. It decomposes chaotic dynamics into intermittently forced linear systems by HAVOK analysis and estimates the external intermittently forcing term using machine learning. The prediction performance evaluations confirm that the proposed method has superior forecasting skills compared with existing prediction methods.
               
Click one of the above tabs to view related content.