LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gradient Learning under Tilted Empirical Risk Minimization

Photo by codioful from unsplash

Gradient Learning (GL), aiming to estimate the gradient of target function, has attracted much attention in variable selection problems due to its mild structure requirements and wide applicability. Despite rapid… Click to show full abstract

Gradient Learning (GL), aiming to estimate the gradient of target function, has attracted much attention in variable selection problems due to its mild structure requirements and wide applicability. Despite rapid progress, the majority of the existing GL works are based on the empirical risk minimization (ERM) principle, which may face the degraded performance under complex data environment, e.g., non-Gaussian noise. To alleviate this sensitiveness, we propose a new GL model with the help of the tilted ERM criterion, and establish its theoretical support from the function approximation viewpoint. Specifically, the operator approximation technique plays the crucial role in our analysis. To solve the proposed learning objective, a gradient descent method is proposed, and the convergence analysis is provided. Finally, simulated experimental results validate the effectiveness of our approach when the input variables are correlated.

Keywords: risk minimization; empirical risk; gradient learning; gradient

Journal Title: Entropy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.