LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neural Adaptive Funnel Dynamic Surface Control with Disturbance-Observer for the PMSM with Time Delays

Photo by shapelined from unsplash

This paper suggests an adaptive funnel dynamic surface control method with a disturbance observer for the permanent magnet synchronous motor with time delays. An improved prescribed performance function is integrated… Click to show full abstract

This paper suggests an adaptive funnel dynamic surface control method with a disturbance observer for the permanent magnet synchronous motor with time delays. An improved prescribed performance function is integrated with a modified funnel variable at the beginning of the controller design to coordinate the permanent magnet synchronous motor with the output constrained into an unconstrained one, which has a faster convergence rate than ordinary barrier Lyapunov functions. Then, the specific controller is devised by the dynamic surface control technique with first-order filters to the unconstrained system. Therein, a disturbance-observer and the radial basis function neural networks are introduced to estimate unmatched disturbances and multiple unknown nonlinearities, respectively. Several Lyapunov-Krasovskii functionals are constructed to make up for time delays, enhancing control performance. The first-order filters are implemented to overcome the “complexity explosion” caused by general backstepping methods. Additionally, the boundedness and binding ranges of all the signals are ensured through the detailed stability analysis. Ultimately, simulation results and comparison experiments confirm the superiority of the controller designed in this paper.

Keywords: dynamic surface; control; disturbance observer; surface control; time delays

Journal Title: Entropy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.