In this work, a unified lattice Boltzmann model is proposed for the fourth order partial differential equation with time-dependent variable coefficients, which has the form ut+α(t)(p1(u))x+β(t)(p2(u))xx+γ(t)(p3(u))xxx+η(t)(p4(u))xxxx=0. A compensation function is… Click to show full abstract
In this work, a unified lattice Boltzmann model is proposed for the fourth order partial differential equation with time-dependent variable coefficients, which has the form ut+α(t)(p1(u))x+β(t)(p2(u))xx+γ(t)(p3(u))xxx+η(t)(p4(u))xxxx=0. A compensation function is added to the evolution equation to recover the macroscopic equation. Applying Chapman-Enskog expansion and the Taylor expansion method, we recover the macroscopic equation correctly. Through analyzing the error, our model reaches second-order accuracy in time. A series of constant-coefficient and variable-coefficient partial differential equations are successfully simulated, which tests the effectiveness and stability of the present model.
               
Click one of the above tabs to view related content.