LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Hyperchaotic 2D-SFCF with Simple Structure and Its Application in Image Encryption

Photo by sarahdorweiler from unsplash

In this paper, a novel image encryption algorithm is proposed based on hyperchaotic two-dimensional sin-fractional-cos-fractional (2D-SFCF), called sin-fractional-cos-fractional image-encryption (SFCF-IE). The 2D-SFCF is constructed from two one-dimensional cosine fractional (1-DCFs),… Click to show full abstract

In this paper, a novel image encryption algorithm is proposed based on hyperchaotic two-dimensional sin-fractional-cos-fractional (2D-SFCF), called sin-fractional-cos-fractional image-encryption (SFCF-IE). The 2D-SFCF is constructed from two one-dimensional cosine fractional (1-DCFs), and it has a more complex chaotic behavior with a larger parameter space than one-dimensional chaotic systems. Compared with the two-dimensional (2D) chaotic system, the 2D-SFCF has a simple structure, and the parameter space in the chaotic state is continuous, which is beneficial to generating the keystream in the cryptosystem. Therefore, in the novel image encryption algorithm, we use the 2D-SFCF to generate the keystream of the cryptosystem. The encryption algorithm is a process of scrambling and diffusion. Different from common diffusion methods, the diffusion starting position of the SFCF-IE is randomly generated, enhancing the algorithm’s security. Simulation experiments show that the image encrypted by this algorithm has better distribution characteristics and can resist common attack methods.

Keywords: encryption; simple structure; image encryption; sfcf simple; image

Journal Title: Entropy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.