LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sparse Regularized Optimal Transport with Deformed q-Entropy

Photo by illiyapresents from unsplash

Optimal transport is a mathematical tool that has been a widely used to measure the distance between two probability distributions. To mitigate the cubic computational complexity of the vanilla formulation… Click to show full abstract

Optimal transport is a mathematical tool that has been a widely used to measure the distance between two probability distributions. To mitigate the cubic computational complexity of the vanilla formulation of the optimal transport problem, regularized optimal transport has received attention in recent years, which is a convex program to minimize the linear transport cost with an added convex regularizer. Sinkhorn optimal transport is the most prominent one regularized with negative Shannon entropy, leading to densely supported solutions, which are often undesirable in light of the interpretability of transport plans. In this paper, we report that a deformed entropy designed by q-algebra, a popular generalization of the standard algebra studied in Tsallis statistical mechanics, makes optimal transport solutions supported sparsely. This entropy with a deformation parameter q interpolates the negative Shannon entropy (q=1) and the squared 2-norm (q=0), and the solution becomes more sparse as q tends to zero. Our theoretical analysis reveals that a larger q leads to a faster convergence when optimized with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. In summary, the deformation induces a trade-off between the sparsity and convergence speed.

Keywords: optimal transport; entropy sparse; transport; regularized optimal; sparse regularized; deformed entropy

Journal Title: Entropy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.