LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimal Security Protection Strategy Selection Model Based on Q-Learning Particle Swarm Optimization

Photo by scottwebb from unsplash

With the rapid development of Industrial Internet of Things technology, the industrial control system (ICS) faces more and more security threats, which may lead to serious risks and extensive damage.… Click to show full abstract

With the rapid development of Industrial Internet of Things technology, the industrial control system (ICS) faces more and more security threats, which may lead to serious risks and extensive damage. Naturally, it is particularly important to construct efficient, robust, and low-cost protection strategies for ICS. However, how to construct an objective function of optimal security protection strategy considering both the security risk and protection cost, and to find the optimal solution, are all significant challenges. In this paper, we propose an optimal security protection strategy selection model and develop an optimization framework based on Q-Learning particle swarm optimization (QLPSO). The model performs security risk assessment of ICS by introducing the protection strategy into the Bayesian attack graph. The QLPSO adopts the Q-Learning to improve the local optimum, insufficient diversity, and low precision of the PSO algorithm. Simulations are performed on a water distribution ICS, and the results verify the validity and feasibility of our proposed model and the QLPSO algorithm.

Keywords: protection; optimal security; security; model; protection strategy

Journal Title: Entropy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.