LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Dual-Stage Attention Model for Tool Wear Prediction in Dry Milling Operation

Photo by thinkmagically from unsplash

The intelligent monitoring of tool wear status and wear prediction are important factors affecting the intelligent development of the modern machinery industry. Many scholars have used deep learning methods to… Click to show full abstract

The intelligent monitoring of tool wear status and wear prediction are important factors affecting the intelligent development of the modern machinery industry. Many scholars have used deep learning methods to achieve certain results in tool wear prediction. However, due to the instability and variability of the signal data, some neural network models may have gradient decay between layers. Most methods mainly focus on feature selection of the input data but ignore the influence degree of different features to tool wear. In order to solve these problems, this paper proposes a dual-stage attention model for tool wear prediction. A CNN-BiGRU-attention network model is designed, which introduces the self-attention to extract deep features and embody more important features. The IndyLSTM is used to construct a stable network to solve the gradient decay problem between layers. Moreover, the attention mechanism is added to the network to obtain the important information of output sequence, which can improve the accuracy of the prediction. Experimental study is carried out for tool wear prediction in a dry milling operation to demonstrate the viability of this method. Through the experimental comparison and analysis with regression prediction evaluation indexes, it proves the proposed method can effectively characterize the degree of tool wear, reduce the prediction errors, and achieve good prediction results.

Keywords: wear prediction; prediction; model; attention; tool wear

Journal Title: Entropy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.