LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Joint Power and Time Allocation in Hybrid NoMA/OMA IoT Networks for Two-Way Communications

Photo from wikipedia

This article investigates two-way communications between an access point (AP) and multiple terminals in low-cost Internet of Things (IoT) networks. The main issues considered are the asymmetric transmission traffic on… Click to show full abstract

This article investigates two-way communications between an access point (AP) and multiple terminals in low-cost Internet of Things (IoT) networks. The main issues considered are the asymmetric transmission traffic on the uplink (UL) and downlink (DL), and the unbalanced receivers processing capability at the AP and the terminals. As a solution, a hybrid non-orthogonal multiple access/orthogonal multiple access (NoMA/OMA) scheme together with a joint power and time allocation method is proposed to address these issues. For the system design, we formulated the optimization problem with the aim of minimizing the system power and satisfying the UL and DL transmission rate constraints. Due to the coupling of power and time variables in the objective function and the multi-user interference (MUI) in the UL transmission rate constraints, the formulated problem is shown to be non-linear and non-convex and thus is hard to solve. To obtain a numerical, efficient solution, the original problem is first reformulated to be a convex one relying on the successive convex approximation (SCA) method, and then a numerical efficient solution is thus obtained by using an iterative routine. The proposed transmission scheme is shown to be not only physically feasible but also power-efficient.

Keywords: way communications; two way; power; iot networks; power time

Journal Title: Entropy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.