LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geometrical Bounds on Irreversibility in Squeezed Thermal Bath

Photo by jareddrice from unsplash

Irreversible entropy production (IEP) plays an important role in quantum thermodynamic processes. Here, we investigate the geometrical bounds of IEP in nonequilibrium thermodynamics by exemplifying a system coupled to a… Click to show full abstract

Irreversible entropy production (IEP) plays an important role in quantum thermodynamic processes. Here, we investigate the geometrical bounds of IEP in nonequilibrium thermodynamics by exemplifying a system coupled to a squeezed thermal bath subject to dissipation and dephasing, respectively. We find that the geometrical bounds of the IEP always shift in a contrary way under dissipation and dephasing, where the lower and upper bounds turning to be tighter occur in the situation of dephasing and dissipation, respectively. However, either under dissipation or under dephasing, we may reduce both the critical time of the IEP itself and the critical time of the bounds for reaching an equilibrium by harvesting the benefits of squeezing effects in which the values of the IEP, quantifying the degree of thermodynamic irreversibility, also become smaller. Therefore, due to the nonequilibrium nature of the squeezed thermal bath, the system–bath interaction energy has a prominent impact on the IEP, leading to tightness of its bounds. Our results are not contradictory with the second law of thermodynamics by involving squeezing of the bath as an available resource, which can improve the performance of quantum thermodynamic devices.

Keywords: irreversibility; geometrical bounds; thermal bath; dissipation; squeezed thermal; bath

Journal Title: Entropy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.