LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Contrastive Self-Supervised Learning Framework for Solving Data Imbalance in Solder Joint Defect Detection

Photo from wikipedia

Poor chip solder joints can severely affect the quality of the finished printed circuit boards (PCBs). Due to the diversity of solder joint defects and the scarcity of anomaly data,… Click to show full abstract

Poor chip solder joints can severely affect the quality of the finished printed circuit boards (PCBs). Due to the diversity of solder joint defects and the scarcity of anomaly data, it is a challenging task to automatically and accurately detect all types of solder joint defects in the production process in real time. To address this issue, we propose a flexible framework based on contrastive self-supervised learning (CSSL). In this framework, we first design several special data augmentation approaches to generate abundant synthetic, not good (sNG) data from the normal solder joint data. Then, we develop a data filter network to distill the highest quality data from sNG data. Based on the proposed CSSL framework, a high-accuracy classifier can be obtained even when the available training data are very limited. Ablation experiments verify that the proposed method can effectively improve the ability of the classifier to learn normal solder joint (OK) features. Through comparative experiments, the classifier trained with the help of the proposed method can achieve an accuracy of 99.14% on the test set, which is better than other competitive methods. In addition, its reasoning time is less than 6 ms per chip image, which is in favor of the real-time defect detection of chip solder joints.

Keywords: solder; framework; self supervised; contrastive self; solder joint

Journal Title: Entropy
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.