LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and Application of Deep Hash Embedding Algorithm with Fusion Entity Attribute Information

Photo from wikipedia

Hash is one of the most widely used methods for computing efficiency and storage efficiency. With the development of deep learning, the deep hash method shows more advantages than traditional… Click to show full abstract

Hash is one of the most widely used methods for computing efficiency and storage efficiency. With the development of deep learning, the deep hash method shows more advantages than traditional methods. This paper proposes a method to convert entities with attribute information into embedded vectors (FPHD). The design uses the hash method to quickly extract entity features, and uses a deep neural network to learn the implicit association between entity features. This design solves two main problems in large-scale dynamic data addition: (1) The linear growth of the size of the embedded vector table and the size of the vocabulary table leads to huge memory consumption. (2) It is difficult to deal with the problem of adding new entities to the retraining model. Finally, taking the movie data as an example, this paper introduces the encoding method and the specific algorithm flow in detail, and realizes the effect of rapid reuse of dynamic addition data model. Compared with three existing embedding algorithms that can fuse entity attribute information, the deep hash embedding algorithm proposed in this paper has significantly improved in time complexity and space complexity.

Keywords: entity attribute; entity; attribute information; deep hash; hash

Journal Title: Entropy
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.