LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Review of Partial Information Decomposition in Algorithmic Fairness and Explainability

Photo by alterego_swiss from unsplash

Partial Information Decomposition (PID) is a body of work within information theory that allows one to quantify the information that several random variables provide about another random variable, either individually… Click to show full abstract

Partial Information Decomposition (PID) is a body of work within information theory that allows one to quantify the information that several random variables provide about another random variable, either individually (unique information), redundantly (shared information), or only jointly (synergistic information). This review article aims to provide a survey of some recent and emerging applications of partial information decomposition in algorithmic fairness and explainability, which are of immense importance given the growing use of machine learning in high-stakes applications. For instance, PID, in conjunction with causality, has enabled the disentanglement of the non-exempt disparity which is the part of the overall disparity that is not due to critical job necessities. Similarly, in federated learning, PID has enabled the quantification of tradeoffs between local and global disparities. We introduce a taxonomy that highlights the role of PID in algorithmic fairness and explainability in three main avenues: (i) Quantifying the legally non-exempt disparity for auditing or training; (ii) Explaining contributions of various features or data points; and (iii) Formalizing tradeoffs among different disparities in federated learning. Lastly, we also review techniques for the estimation of PID measures, as well as discuss some challenges and future directions.

Keywords: information; fairness explainability; information decomposition; partial information; algorithmic fairness

Journal Title: Entropy
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.