LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Spin Coating Parameters on the Electrochemical Properties of Ruthenium Oxide Thin Films

Photo by tabithaturnervisuals from unsplash

Ruthenium oxide (RuOx) thin films were spin coated by thermal decomposition of alcoholic solutions of RuCl3 on titanium foils and subsequently annealed at 400 °C. The effect of spin coating… Click to show full abstract

Ruthenium oxide (RuOx) thin films were spin coated by thermal decomposition of alcoholic solutions of RuCl3 on titanium foils and subsequently annealed at 400 °C. The effect of spin coating parameters, such as spinning speed, volume, and molar concentration of the precursor as well as the number of deposits, on the morphology and electrochemical performance of the electrodes was investigated. The films were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV) with and without chloride, and linear sweep voltammetry (LSV). The prepared materials were also compared to drop cast films and spin-coated films obtained by adopting low-temperature intermediate treatments. The results indicate that even dispersion of the oxide layer was always achieved. By tuning the spin coating parameters, it was possible to obtain different electrochemical responses. The most influential parameter is the number of deposits, while the concentration of the precursor salt and the rotation speed were less relevant, under the adopted conditions.

Keywords: ruthenium oxide; spin coating; coating parameters; thin films; effect spin

Journal Title: Electrochemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.