LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Understanding the Effect of Zn Doping on Stability of Cobalt-Free P2-Na0.60Fe0.5Mn0.5O2 Cathode for Sodium Ion Batteries

Photo from wikipedia

In this work, we report a sol-gel synthesis-based Zn-doped Na0.6Fe0.5Mn0.5O2 (NFM) cathode and understand the effect of Zn doping on the crystal structure and electrochemical performances such as discharge capacity… Click to show full abstract

In this work, we report a sol-gel synthesis-based Zn-doped Na0.6Fe0.5Mn0.5O2 (NFM) cathode and understand the effect of Zn doping on the crystal structure and electrochemical performances such as discharge capacity and rate capability. Detailed X-Ray diffraction (XRD) pattern analysis indicated a decrease in the Na-layer thickness with Zn doping. Small amount of Zn2+ dopant (i.e., 2 at.%) slightly improved cycling stability, reversibility, and rate performances at higher discharge current rates. For example, at 1 C-rate (1 C = 260 mAh/g), the Zn2+-doped cathode retained a stable reversible capacity of 72 mAh/g, which was ~16% greater than that of NFM (62 mAh/g) and showed a minor improvement in the capacity retention of 60% compared to 55% for the pristine NFM after 65 cycles. Slight improvement in the electrochemical performance for the Zn-doped cathode can be attributed to a better structural stability, which prevented the initial phase transition and showed the presence of electrochemical active Fe3+/4+ even after 10 cycles compared to NFM.

Keywords: effect doping; stability; 5mn0 5o2; cathode; understanding effect

Journal Title: Electrochemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.