LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of the Dendrimer Generation Used in the Synthesis of Pt-Ru Nanoparticles Supported on Carbon Nanofibers on the Catalytic Activity towards Methanol Oxidation

Photo from wikipedia

Pt-Ru nanoparticles supported on carbon nanofibers (CNF) were synthesized by the sodium borohydride reduction method, using different generation dendrimers (zero, one, two and three generations). After the synthesis process, these… Click to show full abstract

Pt-Ru nanoparticles supported on carbon nanofibers (CNF) were synthesized by the sodium borohydride reduction method, using different generation dendrimers (zero, one, two and three generations). After the synthesis process, these materials were submitted to a heat treatment at 350 °C, in order to clean the nanoparticle surface of organic residues. TEM characterization showed that the Pt-Ru nanoparticles size ranged between 1.9 and 5.5 nm. The use of dendrimers did not totally avoid the formation of aggregates, although monodisperse sizes were observed. The heat treatment produces the desired surface cleaning, although promoted the formation of agglomerates and crystalline Ru oxides. The study of the electrochemical activity towards the methanol oxidation displayed some clues about the influence of both the dendrimer generation and the presence of Ru oxides. Moreover, the apparent activation energy Eap for this reaction was determined. The results showed a beneficial effect of the heat treatment on the methanol oxidation current densities for the materials synthesized with the biggest dendrimers, being the methanol deprotonation and COad diffusion the predominant rate determining steps (rds).

Keywords: nanoparticles supported; supported carbon; methanol oxidation; generation; carbon nanofibers

Journal Title: Energies
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.