LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

State of Charge Estimation for Lithium-Ion Battery with a Temperature-Compensated Model

Photo from wikipedia

Accurate estimation of the state of charge (SOC) of batteries is crucial in a battery management system. Many studies on battery SOC estimation have been investigated recently. Temperature is an… Click to show full abstract

Accurate estimation of the state of charge (SOC) of batteries is crucial in a battery management system. Many studies on battery SOC estimation have been investigated recently. Temperature is an important factor that affects the SOC estimation accuracy while it is still not adequately addressed at present. This paper proposes a SOC estimator based on a new temperature-compensated model with extended Kalman Filter (EKF). The open circuit voltage (OCV), capacity, and resistance and capacitance (RC) parameters in the estimator are temperature dependent so that the estimator can maintain high accuracy at various temperatures. The estimation accuracy decreases when applied in high current continuous discharge, because the equivalent polarization resistance decreases as the discharge current increases. Therefore, a polarization resistance correction coefficient is proposed to tackle this problem. The estimator also demonstrates a good performance in dynamic operating conditions. However, the equivalent circuit model shows huge uncertainty in the low SOC region, so measurement noise variation is proposed to improve the estimation accuracy there.

Keywords: temperature compensated; state charge; estimation; temperature; compensated model

Journal Title: Energies
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.