LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessment and Performance Evaluation of a Wind Turbine Power Output

Photo from wikipedia

Estimation errors have constantly been a technology bother for wind power management, often time with deviations of actual power curve (APC) from the turbine power curve (TPC). Power output dispersion… Click to show full abstract

Estimation errors have constantly been a technology bother for wind power management, often time with deviations of actual power curve (APC) from the turbine power curve (TPC). Power output dispersion for an operational 800 kW turbine was analyzed using three averaging tine steps of 1-min, 5-min, and 15-min. The error between the APC and TPC in kWh was about 25% on average, irrespective of the time of the day, although higher magnitudes of error were observed during low wind speeds and poor wind conditions. The 15-min averaged time series proved more suitable for grid management and energy load scheduling, but the error margin was still a major concern. An effective power curve (EPC) based on the polynomial parametric wind turbine power curve modeling technique was calibrated using turbine and site-specific performance data. The EPC reduced estimation error to about 3% in the aforementioned time series during very good wind conditions. By integrating statistical wind speed forecasting methods and site-specific EPCs, wind power forecasting and management can be significantly improved without compromising grid stability.

Keywords: turbine; wind; power curve; power output; power; turbine power

Journal Title: Energies
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.