LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and Validation of Numerical Models for Evaluation of Foam-Vacuum Insulation Panel Composite Boards, Including Edge Effects

Photo from wikipedia

A combined finite element analysis (FEA) and experimental validation approach to estimating effective edge conductivities of vacuum insulation panels (VIPs) embedded in foam-VIP composites is presented. The edge conductivities were… Click to show full abstract

A combined finite element analysis (FEA) and experimental validation approach to estimating effective edge conductivities of vacuum insulation panels (VIPs) embedded in foam-VIP composites is presented. The edge conductivities were estimated by comparing the simulation results with measurements of small-scale (0.61 × 0.61 m) foam-VIP composites and using an error minimization method. The two composites contained multiple VIPs that were butt-jointed with each other in one composite and separated by foam insulation in the other. Edge conductivities were estimated by considering the neighboring materials, i.e., whether the VIPs were adjacent to other VIPs or foam insulation. Models incorporating the edge conductivities were then used to simulate additional small- and large-scale (2.44 × 1.22 m) composites for validation and evaluation of the overall thermal transmission properties. The simulations used either the same boundary conditions as the experiments or used the experimental parameters to define the appropriate boundary conditions.

Keywords: validation; edge conductivities; vacuum insulation; edge; insulation; evaluation

Journal Title: Energies
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.