LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering

Photo from wikipedia

Load curve data from advanced metering infrastructure record the consumers’ behavior. User consumption models help one understand a more intelligent power provisioning and clustering the load data is one of… Click to show full abstract

Load curve data from advanced metering infrastructure record the consumers’ behavior. User consumption models help one understand a more intelligent power provisioning and clustering the load data is one of the popular approaches for building these models. Similarity measurements are important in the clustering model, but, load curve data is a time series style data, and traditional measurement methods are not suitable for load curve data. To cluster the load curve data more accurately, this paper applied an enhanced Pearson similarity for load curve data clustering. Our method introduces the ‘trend alteration point’ concept and integrates it with the Pearson similarity. By introducing a weight for Pearson distance, this method helps to keep the whole contour of the load data and the partial similarity. Based on the weighed Pearson distance, a weighed Pearson-based hierarchy clustering algorithm is proposed. Years of load curve data are used for evaluation. Several user consumption models are found and analyzed. Results show that the proposed method improves the accuracy of load data clustering.

Keywords: pearson; similarity; curve data; load; load curve

Journal Title: Energies
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.