LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influences of Fracturing Fluid Injection on Mechanical Integrity of Cement Sheath under Four Failure Modes

Photo by hakannural from unsplash

The significant decreased wellbore temperature and increased casing pressure during fracturing fluid injection present a big challenge for the mechanical integrity of cement sheath in fracturing wells. Based on the… Click to show full abstract

The significant decreased wellbore temperature and increased casing pressure during fracturing fluid injection present a big challenge for the mechanical integrity of cement sheath in fracturing wells. Based on the theories of elastic mechanics, thermodynamics, and a multi-layer composed thick-wall cylinder, this paper proposed a new mechanical model of cement sheath for fracturing wells, coupling pressure, and thermal loads, which consider the failure modes of de-bonding, radial cracking, disking, and shear failure. The radial nonuniform temperature change and the continuous radial stress and radial displacement at two interfaces have been considered. With the proposed model, the radial distributions of failure stress and the corresponding safety factor for cement sheath during fracturing fluid injection have been analyzed and compared under four failure modes. Results show that the decreased wellbore temperature will produce significant tri-axial tensile stress and induce cement failure of de-bonding, radial cracking, and disking. The increased casing pressure will significantly lower the risk of de-bonding but also aggravate radial cracking and shear failure. For integrity protection of cement sheath, increasing the injected fluid temperature, maintaining higher circulation pumping pressures, and adopting cement sheath with a low elasticity modulus have been suggested for fracturing wells.

Keywords: failure; fracturing fluid; fluid injection; cement sheath

Journal Title: Energies
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.