Permeability is one of the key factors involved in the optimization of oil and gas production in fractured porous media. Understanding the loss in permeability influenced by the fracture system… Click to show full abstract
Permeability is one of the key factors involved in the optimization of oil and gas production in fractured porous media. Understanding the loss in permeability influenced by the fracture system due to the increasing effective stress aids to improve recovery in tight reservoirs. Specifically, the impacts on permeability loss caused by different fracture parameters are not yet clearly understood. The principal aim of this paper is to develop a reasonable and meaningful quantitative model that manifests the controls on the permeability of fracture systems with different extents of fracture penetration. The stress-dependent permeability of a fracture system was studied through physical tests and numerical simulation with the finite element method (FEM). In addition, to extend capability beyond the existing model, a theoretical stress-dependent permeability model is proposed with fracture penetration extent as an influencing factor. The results presented include (1) a friendly agreement between the predicted permeability reduction under different stress conditions and the practical experimental data; (2) rock permeability of cores with fractures first reduces dramatically due to the closure of the fractures, then the permeability decreases gradually with the increase in effective stress; and (3) fracture penetration extent is one of the main factors in permeability stress sensitivity. The sensitivity is more influenced by fracture systems with a larger fracture penetration extent, whereas matrix compaction is the leading influencing factor in permeability stress sensitivity for fracture systems with smaller fracture penetration extents.
               
Click one of the above tabs to view related content.