Cascade H-bridge (CHB) inverter is an attractive choice for integration of DC sources of different nature, e.g., for distributed generation with energy storage, photovoltaic generation, etc. In general, non-equal DC… Click to show full abstract
Cascade H-bridge (CHB) inverter is an attractive choice for integration of DC sources of different nature, e.g., for distributed generation with energy storage, photovoltaic generation, etc. In general, non-equal DC voltage sources can affect the total harmonic distortion (THD) of the CHB by introducing undesirable low-frequency subharmonics. This paper investigates different level-shifted (LS) and phase-shifted (PS) pulse width modulation (PWM) strategies for single- and three-phase cascade H-bridge inverters with non-equal DC sources from the load current THD minimization perspective. The best current quality is provided by LS PWM, as reported in the literature. The paper provides a simple time domain explanation of LS PWM superiority. However, PS PWM may be a preferable choice for practical applications due to fair power and loss sharing across individual H-bridges. The paper explains how to obtain the best current quality by PS PWM carriers’ order arrangement (DC sources switching sequence selection).
               
Click one of the above tabs to view related content.