LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Airside Performance of H-Type Finned Tube Banks with Surface Modifications

Photo from wikipedia

The present study numerically investigates some novel modifications to augment the performance of the H-type finned tube banks, which are widely used in waste heat recovery in industries. The imposed… Click to show full abstract

The present study numerically investigates some novel modifications to augment the performance of the H-type finned tube banks, which are widely used in waste heat recovery in industries. The imposed modifications upon the original H-type finned tube banks include the following: (1) Design 1 contains some triangular cuts at the edge of the original rectangular fin; (2) Design 2 modifies the original rectangular geometry into a trapezoid shape; (3) Design 3 renders the original rectangular cross-section fin thickness into trapezoid cross-section; and (4) Design 4 changes the original rectangular shape into a circular shape. Based on the simulations, it is found that Design 1 shows barely any improvements in the heat transfer performance and surface area reduction. Design 2 can provide some weight saving and surface area reduction at a slightly inferior heat transfer performance. Design 3 can offer up to 14% improvements in the overall heat transfer performance without any pumping power penalty. Yet, Design 4 provides the maximum weight saving as compared to the original reference case. With 3–9% lesser surface area than the reference case, Design 4 still offers marginally higher heat transfer performance.

Keywords: type finned; performance; tube banks; finned tube; design

Journal Title: Energies
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.