State of charge (SOC) estimation is a key issue in battery management systems. The challenge lies in balancing the trade-off between accuracy and computation cost. To this end, we propose… Click to show full abstract
State of charge (SOC) estimation is a key issue in battery management systems. The challenge lies in balancing the trade-off between accuracy and computation cost. To this end, we propose an alternate method by combining the ampere-hour integral (AHI) method which has low computation cost, and the adaptive extended Kalman filter (AEKF) method, which has high accuracy. The technical viability of this alternate method is verified on a LiMnO2-LiNiO2 battery module with a nominal capacity of 130 Ah under the New European Driving Cycle (NEDC) condition. Drifts in current and voltage measurement are considered. The experimental results show that the absolute SOC error using the AHI method monotonously increases from 0% to 7.2% with the computation time of 10 s while the calculation time is obtained on a ThinkPad E450 PC with an Intel Core i7-5500U CPU @2.40 GHz and 16.0 GB RAM. The absolute SOC error of the AEKF method maintains within 3.5% with the computation time of 49 s. Therefore, the alternate method almost maintains the same SOC accuracy compared to the AEKF method which reduces the maximum absolute SOC error by 50% compared to the AHI method. Therefore, the alternate method almost has the same computation time compared with the AHI method which reduces the computation time by nearly 75% compared to the AEKF method.
               
Click one of the above tabs to view related content.