LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sensitivity Analysis of Key Parameters for Population Balance Based Soot Model for Low-Speed Diffusion Flames

Photo by hautier from unsplash

In this article, the evolution of in-flame soot species in a slow speed, buoyancy-driven diffusion flame is thoroughly studied with the implementation of the population balance approach in association with… Click to show full abstract

In this article, the evolution of in-flame soot species in a slow speed, buoyancy-driven diffusion flame is thoroughly studied with the implementation of the population balance approach in association with computational fluid dynamics (CFD) techniques. This model incorporates interactive fire phenomena, including combustion, radiation, turbulent mixing, and all key chemical and physical formation and destruction processes, such as particle inception, surface growth, oxidation, and aggregation. The in-house length-based Direct Quadrature Method of Moments (DQMOM) soot model is fully coupled with all essential fire sub-modelling components and it is specifically constructed for low-speed flames. Additionally, to better describe the combustion process of the parental fuel, ethylene, the strained laminar flamelet model, which considers detailed chemical reaction mechanisms, is adopted. Numerical simulation is validated against a self-conducted co-flow slot burner experimental measurement. A comprehensive assessment of the effect of adopting different nucleation laws, oxidation laws, and various fractal dimension and diffusivity values is performed. The results suggest the model employing Moss law of nucleation, modified NSC law of oxidation, and adopting a fractal dimension value of 2.0 and Schmidt number of 0.9 yields the simulation result that best agreed with experimental data.

Keywords: speed; population balance; model; soot model; diffusion; low speed

Journal Title: Energies
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.