LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Hybrid Neural Network Model for Power Demand Forecasting

Photo from wikipedia

The problem of power demand forecasting for the effective planning and operation of smart grid, renewable energy and electricity market bidding systems is an open challenge. Numerous research efforts have… Click to show full abstract

The problem of power demand forecasting for the effective planning and operation of smart grid, renewable energy and electricity market bidding systems is an open challenge. Numerous research efforts have been proposed for improving prediction performance in practical environments through statistical and artificial neural network approaches. Despite these efforts, power demand forecasting problems remain to be a grand challenge since existing methods are not sufficiently practical to be widely deployed due to their limited accuracy. To address this problem, we propose a hybrid power demand forecasting model, called (c, l)-Long Short-Term Memory (LSTM) + Convolution Neural Network (CNN). We consider the power demand as a key value, while we incorporate c different types of contextual information such as temperature, humidity and season as context values in order to preprocess datasets into bivariate sequences consisting of pairs. These c bivariate sequences are then input into c LSTM networks with l layers to extract feature sets. Using these feature sets, a CNN layer outputs a predicted profile of power demand. To assess the applicability of the proposed hybrid method, we conduct extensive experiments using real-world datasets. The results of the experiments indicate that the proposed (c, l)-LSTM+CNN hybrid model performs with higher accuracy than previous approaches.

Keywords: power; neural network; power demand; demand forecasting

Journal Title: Energies
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.