LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of Inclined Magnetic Field on Carreau Nanoliquid Thin Film Flow and Heat Transfer with Graphene Nanoparticles

Photo by seemurray from unsplash

The thermodynamics of a Carreau nanoliquid thin film embedded with graphene nanoparticles past a stretching sheet is studied in the presence of inclined magnetic field and non-uniform heat source/sink. Graphene… Click to show full abstract

The thermodynamics of a Carreau nanoliquid thin film embedded with graphene nanoparticles past a stretching sheet is studied in the presence of inclined magnetic field and non-uniform heat source/sink. Graphene is a new two-dimensional amphiphilic macromolecule which has great applications due to its electrical and mechanical properties. The basic constitutive equations of Carreau nanoliquid for velocity and temperature have been used. Similarity transformations are adopted to achieve the nonlinear coupled differential equations accompanying boundary conditions embedded with different parameters. HAM (Homotopy Analysis Method) is used to solve the transformed equations for expressions of velocity and temperature. Graphs are shown which illustrate the effects of various parameters of interest. There exists a nice agreement between the present and published results. The results are useful for the thermal conductivity and in the analysis and design of coating processes.

Keywords: carreau nanoliquid; thin film; nanoliquid thin; inclined magnetic; magnetic field; graphene nanoparticles

Journal Title: Energies
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.