LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Modulated Model Predictive Current Controller for Interior Permanent-Magnet Synchronous Motors

Model predictive current controllers (MPCCs) are widely applied in motor drive control and operations. To date, however, the presence of large current errors in conventional predictive current control remains a… Click to show full abstract

Model predictive current controllers (MPCCs) are widely applied in motor drive control and operations. To date, however, the presence of large current errors in conventional predictive current control remains a significant predicament, due to harmonic distortions and current ripples. Naturally, noticeable current estimation inaccuracies lead to poor performance. To improve the above situation, a modulated model predictive current controller (MMPCC) is proposed for interior permanent-magnet synchronous motors (IPMSMs) in this paper. Two successive voltage vectors will be applied in a sampling period to greatly boost the number of candidate switching modes from seven to thirteen. A cost function, which is defined as the quadratic sum of current prediction errors, is employed to find an optimal switching mode and an optimized duty ratio to be applied in the next sampling period, such that the cost value is minimal. The effectiveness of the proposed method is verified through eight experiments using a TMS320F28379D microcontroller, and performance comparisons are made against an existing MPCC. In terms of quantitative improvements made to the MPCC, the proposed MMPCC reduces its current ripple and total harmonic distortion (THD) by, on average, 27.17% and 21.84%, respectively.

Keywords: modulated model; predictive current; current controller; permanent magnet; interior permanent; model predictive

Journal Title: Energies
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.