This paper proposes a new probabilistic power flow method for the hybrid AC/VSC-MTDC (Voltage Source Control-Multiple Terminal Direct Current) grids, which is based on the combination of ninth-order polynomial normal… Click to show full abstract
This paper proposes a new probabilistic power flow method for the hybrid AC/VSC-MTDC (Voltage Source Control-Multiple Terminal Direct Current) grids, which is based on the combination of ninth-order polynomial normal transformation (NPNT) and inherited Latin hypercube sampling (ILHS) techniques. NPNT is utilized to directly handle historical records of uncertain sources to build the accurate probability model of random inputs, and ILHS is adopted to propagate the randomness from inputs to target outputs. Regardless of whether the underlying probability distribution is known or unknown, the proposed method has the ability to adaptively evaluate the sample size according to a specific operational scenario of the power systems, thus achieving a good balance between computational accuracy and speed. Meanwhile, the frequency histograms, probability distributions, and some more statistics of the results can be accurately and efficiently estimated as well. The modified IEEE 118-bus system, together with the realistic data of wind speeds and diverse consumer behaviors following irregular distributions, is used to demonstrate the effectiveness and superiority of the proposed method.
               
Click one of the above tabs to view related content.