Battery state of health (SOH) is related to the reduction of total capacity due to complicated aging mechanisms known as calendar aging and cycle aging. In this study, a combined… Click to show full abstract
Battery state of health (SOH) is related to the reduction of total capacity due to complicated aging mechanisms known as calendar aging and cycle aging. In this study, a combined multiple factor degradation model was established to predict total capacity fade considering both calendar aging and cycle aging. Multiple factors including temperature, state of charge (SOC), and depth of discharge (DOD) were introduced into the general empirical model to predict capacity fade for electric vehicle batteries. Experiments were carried out under different aging conditions. By fitting the data between multiple factors and model parameters, battery degradation equations related to temperature, SOC, and DOD could be formulated. The combined multiple factor model could be formed based on the battery degradation equations. An online state of health estimation based on the multiple factor model was proposed to verify the correctness of the model. Predictions were in good agreement with experimental data for over 270 days, as the margin of error between the prediction data and the experimental data never exceeded 1%.
               
Click one of the above tabs to view related content.