LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single Pole-to-Ground Fault Analysis of MMC-HVDC Transmission Lines Based on Capacitive Fuzzy Identification Algorithm

Photo from wikipedia

The probability of a single pole-to-ground fault in high voltage direct current (HVDC) transmission lines is relatively high. For the modular multilevel converter HVDC (MMC-HVDC) systems, when a single pole-to-ground… Click to show full abstract

The probability of a single pole-to-ground fault in high voltage direct current (HVDC) transmission lines is relatively high. For the modular multilevel converter HVDC (MMC-HVDC) systems, when a single pole-to-ground fault occurs, the fault current is small, and it is difficult to identify the fault quickly. Through a detailed analysis of the characteristics of the single pole-to-ground fault of the MMC-HVDC transmission line, it is found that the single pole-to-ground fault has obvious capacitance-related characteristics, and the transient process after the single pole-to-ground fault is the discharge process of the distributed capacitance of the line. However, other faults do not have such obvious capacitance-related characteristics. Based on such feature, this paper proposes a novel capacitive fuzzy identification method to identify the single pole-to-ground fault. This algorithm can effectively identify both the fault of single pole-to-ground and the fault pole, which can contribute to the large database of the future smart grid.

Keywords: fault; single pole; ground fault; pole ground

Journal Title: Energies
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.