LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Parameter Estimation of Three Diode Photovoltaic Model Using Grasshopper Optimization Algorithm

Photo from wikipedia

While addressing the issue of improving the performance of Photovoltaic (PV) systems, the simulation results are highly influenced by the PV model accuracy. Building the PV module mathematical model is… Click to show full abstract

While addressing the issue of improving the performance of Photovoltaic (PV) systems, the simulation results are highly influenced by the PV model accuracy. Building the PV module mathematical model is based on its I-V characteristic, which is a highly nonlinear relationship. All the PV cells’ data sheets do not provide full information about their parameters. This leads to a nonlinear mathematical model with several unknown parameters. This paper proposes a new application of the Grasshopper Optimization Algorithm (GOA) for parameter extraction of the three-diode PV model of a PV module. Two commercial PV modules, Kyocera KC200GT and Solarex MSX-60 PV cells are utilized in examining the GOA-based PV model. The simulation results are executed under various temperatures and irradiations. The proposed PV model is evaluated by comparing its results with the experimental results of these commercial PV modules. The efficiency of the GOA-based PV model is tested by making a fair comparison among its numerical results and other optimization method-based PV models. With the GOA, a precise three-diode PV model shall be established.

Keywords: three diode; model; grasshopper optimization; optimization algorithm

Journal Title: Energies
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.