The thermal and catalytic conversion processes of alternative feedstocks (e.g., waste and biomass) to different engine fuels can result in the formation of a significant amount of light hydrocarbons as… Click to show full abstract
The thermal and catalytic conversion processes of alternative feedstocks (e.g., waste and biomass) to different engine fuels can result in the formation of a significant amount of light hydrocarbons as by-products in the boiling range of gasoline. The properties of these C5/C6 hydrocarbons need to be improved due to many reasons, e.g., their benzene content, and/or poor oxidation stability (high olefin content) and low octane number ( ca. 93 %) in the case of Pt/Al2O3/Cl. In addition, the octane number was also enhanced (ca. 32 > ca. 27 unit) in the products compared to the feedstock. This was because a higher isoparaffin content can be obtained at a lower operating temperature. Moreover, cracking side reactions take place to a lesser extent. The utilization of these isomerized bio-origin light fractions can contribute to the competitiveness of second-generation biofuels.
               
Click one of the above tabs to view related content.