LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lifetime Analysis of IGBT Power Modules in Passively Cooled Tidal Turbine Converters

Photo from wikipedia

Thermal cycling is one of the major reasons for failure in power electronic converters. For submerged tidal turbine converters investigating this failure mode is critical in improving the reliability, and… Click to show full abstract

Thermal cycling is one of the major reasons for failure in power electronic converters. For submerged tidal turbine converters investigating this failure mode is critical in improving the reliability, and minimizing the cost of energy from tidal turbines. This paper considers a submerged tidal turbine converter which is passively cooled by seawater, and where the turbine has fixed-pitch blades. In this respect, this study is different from similar studies on wind turbine converters, which are mostly cooled by active methods, and where turbines are mostly pitch controlled. The main goal is to quantify the impact of surface waves and turbulence in tidal stream velocity on the lifetime of the converter IGBT (insulated gate bipolar transistor) modules. The lifetime model of the IGBT modules is based on the accumulation of fatigue due to thermal cycling. Results indicate that turbulence and surface waves can have a significant impact on the lifetime of the IGBT modules. Furthermore, to accelerate the speed of the lifetime calculation, this paper uses a modified approach by dividing the thermal models into low and high frequency models. The final calculated lifetime values suggest that relying on passive cooling could be adequate for the tidal converters as far as thermal cycling is concerned.

Keywords: turbine; turbine converters; power; passively cooled; tidal turbine; igbt

Journal Title: Energies
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.